Geosci. Model Dev. Discuss., 8, 6809-6866, 2015
www.geosci-model-dev-discuss.net/8/6809/2015/
doi:10.5194/gmdd-8-6809-2015

© Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Geoscientific Model
Development (GMD). Please refer to the corresponding final paper in GMD if available.

The GEWEX LandFlux project: evaluation
of model evaporation using tower-based
and globally-gridded forcing data

M. F. McCabe1, A. Ershadi1, C. Jimenezz, D. G. Miralless, D. Michel4, and
E. F. Wood®

'Division of Biological and Environmental Sciences and Engineering,

King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

2Estellus, Paris, France

3Department of Earth Sciences, VU University Amsterdam, Amsterdam, the Netherlands
*Institute for Atmospheric and Climate Sciences, ETH Zurich, Zurich, Switzerland
5Department of Civil and Environmental Engineering, Princeton University, Princeton, USA

Received: 2 July 2015 — Accepted: 11 August 2015 — Published: 24 August 2015
Correspondence to: M. F. McCabe (matthew.mccabe @kaust.edu.sa)

Published by Copernicus Publications on behalf of the European Geosciences Union.

6809

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction
Conclusions References
Tables Figures
le >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/6809/2015/gmdd-8-6809-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/6809/2015/gmdd-8-6809-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

Determining the spatial distribution and temporal development of evaporation at re-
gional and global scales is required to improve our understanding of the coupled water
and energy cycles and to better monitor any changes in observed trends and variability
of linked hydrological processes. With recent international efforts guiding the develop-
ment of long-term and globally distributed flux estimates, continued product assess-
ments are required to inform upon the selection of suitable model structures and also
to establish the appropriateness of these multi-model simulations for global application.
In support of the objectives of the GEWEX LandFlux project, four commonly used evap-
oration models are evaluated against data from tower-based eddy-covariance observa-
tions, distributed across a range of biomes and climate zones. The selected schemes
include the Surface Energy Balance System (SEBS) approach, the Priestley-Taylor Jet
Propulsion Laboratory (PT-JPL) model, the Penman-Monteith based Mu model (PM-
Mu) and the Global Land Evaporation: the Amsterdam Methodology (GLEAM). Here we
seek to examine the fidelity of global evaporation simulations by examining the multi-
model response to varying sources of forcing data. To do this, we perform parallel and
collocated model simulations using tower-based data together with a global-scale grid-
based forcing product. Through quantifying the multi-model response to high-quality
tower data, a better understanding of the subsequent model response to coarse-scale
globally gridded data that underlies the LandFlux product can be obtained, while also
providing a relative evaluation and assessment of model performance.

Using surface flux observations from forty-five globally distributed eddy-covariance
stations as independent metrics of performance, the tower-based analysis indicated
that PT-JPL provided the highest overally statistical performance (0.72; 61 Wm™2;
0.65), followed closely by GLEAM (0.68; 64Wm™2; 0.62), with values in parenthe-
sis representing the R?, RMSD and Nash-Sutcliffe Efficiency (NSE) and respectively.
PM-Mu (0.51; 78Wm_2; 0.45) tended to underestimate fluxes, while SEBS (0.72;
101 Wm'2; 0.24) overestimated values relative to observations. A focused analysis

6810

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/6809/2015/gmdd-8-6809-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/6809/2015/gmdd-8-6809-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

across specific biome types and climate zones showed considerable variability in the
performance of all models, with no single model consistently able to outperform any
other. Results also indicated that the global gridded data tended to reduce the per-
formance for all of the studied models when compared to the tower data, likely a re-
sponse to scale mismatch and issues related to forcing quality. Rather than relying
on any single model simulation, the spatial and temporal variability at both the tower-
and grid-scale highlighted the potential benefits of developing an ensemble or blended
evaporation product for global scale LandFlux applications. Challenges related to the
robust assessment of the LandFlux product are also discussed.

1 Introduction

Characterizing the exchange of water between the land surface and the atmosphere is
a topic of multi-disciplinary interest, as the processes that comprise this dynamic cy-
cling of water determine the spatial and temporal variability of hydrological responses
across local and global scales. In recent years, there has been significant progress
in the development of regional and global datasets based largely on remote sensing
retrievals. These data have provided a wealth of spatially and temporally varying infor-
mation across a range of Earth system processes, including soil moisture (Liu et al.,
2011a), vegetation change (Tucker et al., 2005; Liu et al., 2011b, 2013), groundwater
(Famiglietti et al., 2011; Richey et al., 2015) and precipitation (Huffman et al., 1995;
Nesbitt et al., 2004), enabling a capacity to enhance our understanding and descrip-
tion of regional- and global-scale water cycles and their spatial and temporal variability.
While evaporation represents the key process for returning the Earth’s surface water
to the overlying atmosphere and represents the linking mechanism between the water
and energy cycles, it is only in relatively recent times that effort has been directed to-
wards the development of global products (Mu et al., 2007; Fisher et al., 2008; Vinukollu
et al,, 2011a).
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To address this observation limitation, a number of evaporation modelling ap-
proaches have been developed over the past few years to enable estimation at scales
beyond the field, using satellite remote sensing (Sheffield et al., 2010; Miralles et al.,
2011a) and other data sources (Douville et al., 2013). The models tend to differ in their
level of empiricism and in the desired scale of application, with some exclusively de-
veloped for farm-scale operation and requiring local calibration (Bastiaanssen et al.,
1998; Allen et al., 2007). Others have been developed for broader scale application
and are built on physical relationships describing the water and energy transfer at
the land surface (Norman et al., 1995; Su, 2002; Fisher et al., 2008; Miralles et al.,
2011a). While traditional applications of evaporation estimates have been directed to-
wards agricultural monitoring (Allen, 2000), catchment water budgets and basin-scale
water management (Kustas et al., 1994; Granger, 2000), more recent applications of
evaporation products have included detection and prediction of heatwaves (Hirschi et
al., 2011; Miralles et al., 2014a), droughts (Mu et al., 2012; Otkin et al., 2014) and in re-
solving the likely contribution of human-induced climate change on such events (Greve
et al., 2014).

Despite the importance of understanding the magnitude and spatial and tempo-
ral variability of evaporation, the availability of long-term products required to do this
are rather limited. Characterizing the long-term trends and variability in independent
observations of the Earth’s coupled water and energy cycles is a key objective of
the World Climate Research Programmes (WCRP) Global Energy and Water Ex-
changes (GEWEX) project. Towards this task, the GEWEX Data and Assessments
Panels (GDAP) LandFlux project has coordinated two interrelated research efforts that
seek to: (i) intercompare long-term gridded surface flux data sets and identify their skill
and reliability (i.e. product-benchmarking), and (ii) simulate and intercompare evapora-
tion models to identify algorithms appropriate for developing a global flux product (i.e.
model-benchmarking). In one of the first global-scale product assessments, Jiménez et
al. (2011) examined twelve evaporation products obtained from satellite-based, reanal-
yses and off-line LSM simulations for a 3 year period (1993-1995), identifying large
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correlations between the products, similarity in their spatial distributions, as well as
large absolute differences in the annual average evaporation. A complementary inves-
tigation of the inter-product differences was undertaken by Mueller et al. (2011), which
included forty-one global evaporation data sets across a range of satellite-based sim-
ulations, LSMs, Global Circulation Models (GCMs), atmospheric reanalyses datasets,
empirical up-scaling of eddy-covariance measurements as well as atmospheric water
budget data sets. In that study, Mueller et al. (2011) used seven years of monthly mean
data for the period 1989-1995 and found strong similarity in the absolute magnitude
and spatial distribution of evaporation amongst the products. More recently, Mueller et
al. (2013) examined multi-annual trends and variations in evaporation products from a
range of diagnostic data sets, LSMs and reanalysis products and showed consistency
in inter-annual variations of evaporation products that corresponded well with previous
investigations (Jung et al., 2010).

These benchmarking studies provided a thorough (and much needed) assessment
of available global evaporation products and the varying approaches used to derive
them. However, evaluation of the models for their predictive skill was challenging due
to inconsistencies in the forcing data used to drive the models, as well as to the different
parameterization schemes employed. That is, the analysis was performed on the pub-
lished evaporation output, rather than re-running simulations from a common forcing
dataset. In these benchmarking studies, the evaporation data sets were also aggre-
gated to similar spatial and temporal resolutions for a common analysis period, to en-
able unbiased comparison. Uncertainties emerging from such aggregations can often
reduce the confidence in any such model performance ranking. One initial effort ad-
dressing this was the study of Vinukollu et al. (2011a), which used the Surface Energy
Balance System (SEBS) model (SEBS; Su, 2002), a two-source Penman-Monteith
scheme by Mu et al. (2007) and a three-source model based on parameterizing the
Priestley-Taylor model (PT-JPL) (Fisher et al., 2008) to estimate global evaporation for
the period 2003—2004. The Vinukollu et al. (2011a) analysis revealed that the mod-
elled instantaneous evaporation (coinciding with the time of satellite overpass) was
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in reasonable agreement with locally-observed evaporation at twelve eddy-covariance
towers across the United States, with correlations ranging from 0.43 to 0.54. However,
uncertainties resulting from scale mismatch between satellite data and the validation
tower footprint reduced the confidence and skill ranking of the models.

Recently, Ershadi et al. (2014) examined a number of models including SEBS, PT-
JPL, the Advection-Aridity model of Brutsaert and Stricker (1979) and a single-source
Penman-Monteith (PM) model (Monteith, 1965), using a set of twenty flux towers dis-
tributed across a range of biome types and climate zones to force the models with
tower-based data directly. Based on common forcing and considering overall results,
the study found that PT-JPL was the best performing model, followed by SEBS, PM
and Advection-Aridity. In a related contribution, Ershadi et al. (2015) provided a more
focused analysis on the influence of model structure and resistance parameterization
on single, two-layer and three-source Penman-Monteith models. The authors identified
considerable variability in the performance of models due to their structure and pa-
rameterization choices. A parallel effort to the LandFlux project is the European Space
Agency (ESA) funded WAter Cycle Multi-mission Observation Strategy for EvapoTran-
spiration (WACMOS-ET,; see http://wacmoset.estellus.eu/). WACMOS-ET, which is fo-
cused on an analysis period covering 2005-2007, seeks to better understand the im-
pacts of model structure on flux estimation, with an additional focus on developing a
consistent forcing dataset. A key result from these early works and the preliminary out-
comes from WACMOS-ET support the finding that no single model or parameterization
consistently outperformed any other across different biomes.

While establishing a baseline level of performance at the tower scale is important,
understanding the impact of using the large-scale globally-gridded forcing that will ulti-
mately drive the global products is key. The focus of the current investigation is to build
upon these past efforts and complement ongoing WACMOS-ET investigations, by sim-
ulating state-of-the-art evaporation models using a parallel assessment of tower-based
meteorology and gridded data, and comparing results with available eddy-covariance
flux observations. Understanding how application of gridded forcing data might influ-
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ence the performance of the different models, relative to their performance when forced
with (presumably) higher-quality tower data, is a motivating rationale for this work. Such
evaluations are important in developing insight into the sensitivity of the models to input
data uncertainties, provide a relative assessment of model quality and also inform upon
issues of spatial scale and footprint mismatch (McCabe and Wood, 2006). Establishing
model suitability for large-scale operational application as part of the GEWEX Landflux
project is a further motivating goal for this work. As such, a major objective is to evalu-
ate the individual model responses across a range of biomes and climate zones. The
models selected for assessment include SEBS, PT-JPL, the Penman-Monteith based
Mu model (PM-Mu) (Mu et al., 2011) as well as the Global Land Evaporation: the Am-
sterdam Methodology (GLEAM) (Miralles et al., 2011a). These models satisfy the key
criteria considered for global model selection, which included reliance on a minimum
number of forcing variables, capacity to use remote sensing based observations, as
well as previous application at either the regional or global scale.

2 Data and Methodology
2.1 Data

For this analysis, model simulations cover the period from 1997 to 2007 and are per-
formed at a 3-hourly temporal resolution. To examine model response and inter-product
variability, a parallel tower- and grid-based analysis was performed. Data for the tower-
based analysis are derived from a set of forty-five eddy-covariance towers (see Ta-
ble A1), while the gridded data are extracted from a compilation of available globally
distributed satellite, meteorological and land surface characteristics products. Com-
pared to the 0.5 degree and 3-hourly gridded data, the use of tower-based forcing is
expected to minimize issues related to footprint uncertainties when evaluating simula-
tions against the observed eddy-covariance based flux data. The primary purpose of
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the grid-based analysis is to better understand the effects of large-scale forcing data
on the accuracy of global retrievals, relative to the tower-based evaluations.

2.1.1 Description of tower-based forcing data

Data for the tower-based analyses are derived from forty-five eddy-covariance towers
selected from within the FLUXNET database (Baldocchi et al., 2001). Table A1 lists
the key attributes of the selected towers and Fig. A1 describes the varying temporal
lengths of the tower records used in this study. The requirement that towers only be
used if they are able to provide the input data required by all models (see Table 1) was a
strong limiting criterion that significantly reduced the number of available study sites. In
particular, the availability of land surface temperature data, which is required for SEBS,
drastically constrained the choice of towers. However, ensuring data consistency within
the towers used for simulation and assessment was an important component of this
work, as it removes the impact of tower bias in subsequent model assessment. Even
with this reduced number, the selected towers represent a considerable spatial spread
encompassing a variety of biome types and climate zones (see Fig. 1).

In terms of forcing data requirements, tower-based variables that were used for
model simulations include air temperature, relative humidity, wind speed, net radiation,
ground heat flux and precipitation. A summary of the forcing data requirements for each
model is provided in Table 1. Land surface emissivity, leaf area index and fractional veg-
etation cover were estimated from Normalized Difference Vegetation Index (NDVI) data
obtained from the Global Inventory Monitoring and Modelling Study (GIMMS) dataset
(Tucker et al., 2005), at 8 km spatial and bi-monthly temporal resolutions. Here, the
emissivity was calculated using the approach of Sobrino et al. (2004), leaf area index
was estimated following Fisher et al. (2008) and the fractional vegetation cover was
estimated using the technique described in Jiménez-Munoz et al. (2009). Land sur-
face temperature was calculated using tower-observed longwave upward radiation and
by inverting the Stefan-Boltzmann equation (Brutsaert, 2005). Atmospheric pressure
data, which are absent from many towers, were calculated based on ground elevation
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of tower locations using an equation presented in Bos et al. (2008). Canopy height
(h¢), which is needed for the SEBS model, was obtained from tower metadata and was
assumed constant during the simulation period. Although A, varies over short vege-
tation, accounting for its within- and inter-annual variability is usually not possible, as
observed data of h; variations are rarely recorded. A recent global sensitivity analy-
sis of the SEBS model(Ershadi and McCabe, 2015), showed that ., was amongst the
least sensitive variables in SEBS, reducing concerns on the impact of this assumption.
Tower data were aggregated (i.e. summed for precipitation and averaged for other input
variables) from their native resolution of half-hourly or hourly to 3-hourly, to match the
temporal resolution of the gridded data.

2.1.2 Description of grid-based forcing data (LandFlux Version 0
forcing dataset)

Grid-based data were developed by Princeton University for the LandFlux Version 0
(V-0) dataset. The variables in the V-0 include air temperature, land surface tempera-
ture, wind speed, atmospheric pressure, specific humidity, precipitation, net radiation,
NDVI and leaf area index. Net radiation data derive from the GEWEX Surface Radia-
tion Budget (SRB) Version-3 (Stackhouse et al., 2011), while land surface temperature
is determined by employing a Bayesian post-processing procedure that merges High-
Resolution Infrared Radiation Sounder (HIRS) retrievals with the land surface tem-
perature data from the National Centers for Environment Prediction (NCEP) Climate
Forecast System Reanalysis (CFSR) (Saha et al., 2010), as described in Coccia et
al. (2015). Precipitation data are also from the NCEP CFSR product and have been
bias-corrected to the Global Precipitation Climatology Project (GPCP) V2.2 dataset
(Adler et al., 2003). Atmospheric pressure, specific humidity and wind speed data were
also based on the CFSR reanalysis data. For vegetation based parameters, NDVI data
were prepared by aggregating 8-km resolution GIMMS NDVI data to 0.5° resolution,
while leaf area index data were developed by Zhu et al. (2013) through fitting GIMMS
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NDVI data to the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2
NDVI product, using a neural network technique.

The majority of variables in the global LandFlux V-0 forcing dataset are at 0.5° spatial
and 3-hourly temporal resolution. Exceptions include the net radiation (1° and 3-hourly),
NDVI (0.5° and bi-monthly) and leaf area index (0.5° and monthly). For net radiation,
the 1° data were linearly interpolated onto a 0.5° resolution. The bi-monthly NDVI data
were assumed constant for all 3-hourly time steps during each 15-days interval, while
the leaf area index data were assumed constant during each month. The canopy height
over shrubland and forest biomes was assumed fixed and was estimated using a static
canopy height product developed by Simard et al. (2011). For grassland and cropland
biomes, where the dynamics of canopy height can be considerable, canopy height was
calculated using Eq. (1), derived from Chen et al. (2012):

max min
hc - hc

NDVI,2x — NDVI

h, = M 4 x (NDVI - NDVI_...) (1)

max min

where A7 and A7 are the minimum and maximum canopy height and were obtained
from the static vegetation table of the North American Data Assimilation System (NL-
DAS) (available from http://Idas.gsfc.nasa.gov/nldas/web/web.veg.table.html). NDVI;,
and NDVI,,, are the minimum and maximum NDVI, respectively, and were calculated
on a pixel-wise basis for each calendar year. The JPL static vegetation height was
aggregated linearly from 1 km to 0.5°. Likewise, the NDVI derived canopy height was
calculated at 8 km resolution and then aggregated to 0.5°. Similar to the tower-based
data, the methodology of Jiménez-Mufioz et al. (2009) was used for the gridded forcing
to estimate the fractional vegetation cover data from NDVI data. The ground heat flux
at the grid-scale was calculated as a fraction of net radiation using fractional vegetation
cover, following Su (2002).
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2.1.3 Model specific forcing data and data sources

In addition to the data described above and shown in Table 1, both GLEAM and SEBS
have some model specific forcing data requirements. For SEBS, information on land
surface temperature, wind-speed and canopy height are required. At the tower-scale,
these data are provided by available meteorological forcing or meta-data descriptions
in the case of canopy height. At the grid-scale they are provided by a combination
of the LandFlux V-O dataset and an adapted JPL static vegetation height, as de-
scribed in Sect. 2.1.2. GLEAM based simulations require information on soil properties,
vegetation optical depth (VOD), satellite soil moisture, snow water equivalent, light-
ning frequency and vegetation cover fraction. Soil properties data for GLEAM include
field capacity, critical soil moisture and wilting point soil moisture thresholds. Data for
these were obtained from the Global Gridded Surfaces of Selected Soil Characteristics
dataset of the International Geosphere-Biosphere Programmes Data and Information
System (IGBP-DIS), available from Oak Ridge National Laboratory Distributed Active
Archive Center (http://www.daac.ornl.gov). Soil properties data were used in their na-
tive 5 arc-minute resolution for tower-based analysis, but were aggregated to 0.5° for
grid-based assessment. Vegetation optical depth data was from Liu et al. (2011b) us-
ing a merged product from multiple microwave based satellite data. The 0.25° spatial
and daily temporal resolutions VOD data were gap-filled as described by Miralles et
al. (2011a). Soil moisture data assimilated in GLEAM comes from the CCI-WACMOS
dataset (Liu et al., 2012) produced from both active and passive satellite microwave
data at 0.25° and daily resolution. Snow water equivalent data are from the Glob-
Snow product version 1.0 (Luojus et al., 2010); as GlobSnow covers the northern
hemisphere only, Global Monthly Snow Water Equivalent Climatology data from the
National Snow and Ice Data Center (NSIDC) (Armstrong et al., 2005) are used for the
BW-Ma1 tower (see Table A1) located in the southern hemisphere. Both GlobSnow
data and the NSIDC product are at approximately 0.25° spatial and daily temporal res-
olutions. Lightning frequency data is based on the Combined Global Lightning Flash
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Rate Density monthly climatology at 0.5° (Mach et al., 2007) and it is used to calculate
a climatology of rainfall rates (Miralles et al., 2010). Finally, vegetation cover fractions
are derived from the MODIS MOD44B product (Hansen et al., 2005). The MODIS con-
tinuous cover factions describe every pixel as a combination of its fractions of water,
tall canopy, short vegetation and bare soil. The temporal average of fractions is used
here for the MODIS period, providing only a static cover fraction for the GLEAM simula-
tions. The MOD44B product is available at 250 m and 0.25° resolution. For tower-based
analysis, cover fractions are at 250 m resolution, but for grid-based analysis the 0.25°
MOD44B product was aggregated to 0.5°.

Table A1 summarizes the different sources and spatiotemporal scales of the data
that were used for both the tower- and grid-based flux simulations. As noted earlier, the
temporal analysis encompasses the period 1997-2007, although as defined in Fig. A1,
the individual tower records do not necessarily provide uninterrupted observations dur-
ing this time range.

2.1.4 Definition of selected biome type and climate zones

The specific biomes examined in this work include wetland (WET), grassland (GRA),
cropland (CRO), shrubland (SHR), evergreen needleleaf forest (ENF), evergreen
broadleaf forest (EBF) and deciduous broadleaf forest (DBF). For simplicity, the shrub-
land biome is comprised of closed shrubland, woody savannah and mixed forest
biomes. The number of towers for each biome type varies, with fourteen for evergreen
needleleaf forest, ten for grassland, seven for cropland, seven for deciduous broadleaf
forest, four for shrubland, two for wetland and only one for evergreen broadleaf for-
est (see Table A1). The climate zones include boreal (BOR), sub-tropical (subTRO),
temperate (TEMP), temperate-continental (TempCONT) and dry (DRY) for arid and
semi arid regions. As with biome type, the towers are not evenly distributed across
climate zones, with fifteen for temperate, eleven for sub-tropical, eight for temperate-
continental, five for boreal and six for dry regions (see Table A1).
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2.2 LandFlux Model Descriptions

Following are brief descriptions of the models employed in this analysis. For a more
comprehensive explanation of the implementation of these different schemes, the
reader is referred to the principal model references as well as the recent contributions
of Ershadi et al. (2014, 2015).

221 SEBS

SEBS is a widely-employed process-based model used in the estimation of evapo-
ration. The model uses a variety of land surface and atmospheric variables and pa-
rameters for simulating the transfer of heat and water vapor from the land surface to
the atmosphere. To do so, the model first estimates the representative roughness of
the land surface and then uses roughness parameters, temperature gradient and wind
speed data to estimate sensible heat flux via a set of flux-gradient equations describ-
ing the transfer of heat from the land surface to the atmosphere. Depending on the
atmospheric boundary layer height, the model uses either the Monin-Obukhov Sim-
ilarity Theory or the Bulk Atmospheric Similarity Theory equations (Brutsaert, 2005).
The model estimates the sensible heat flux of hypothetically wet and dry conditions and
uses these extreme-cases to calculate the evaporative fraction. Evaporation is then cal-
culated as a fraction of the available energy. The model requires accurate values of net
radiation, land surface temperature, air temperature, humidity, wind speed and vegeta-
tion phenology to calculate surface fluxes. SEBS relaxes the need for parameterization
of the surface resistance, but is sensitive to aerodynamic resistance parameterization
(Ershadi et al., 2013). Further details on SEBS and its model formulation can be found
in Su (2002).
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222 PT-JPL

The PT-JPL model of evaporation uses a minimum of meteorological and remote sens-
ing data and has been employed in a number of studies to estimate regional and global
scales flux response (Fisher et al., 2008; Sahoo et al., 2011; Vinukollu et al., 2011a, b;
Badgley et al., 2015). A key characteristic of the model is the use of bio-physiological
properties of the land surface to reduce Priestley-Taylor potential evaporation to actual
values. The PT-JPL is a three source model in which the total evaporation is parti-
tioned into soil evaporation (AEg), canopy transpiration (1£;), and wet canopy evapo-
ration (AE;), i.e. AE = AEg + AE; + AE;. The model first partitions the total net radiation
to soil and vegetation components and calculates potential evaporation for soil, for
canopy and for the wet canopy. The model then determines a set of constraint multipli-
ers to represent the impacts of green canopy fraction, relative wetness of the canopy,
air temperature, plant water stress and soil water stress on the evaporative process.
The model uses the constraint multipliers to reduce the potential evaporation to actual
values for each component of the system. PT-JPL does not calibrate or tune parameter
values and does not use wind speed data or parameterizations of the aerodynamic and
surface resistances. However, the model does require accurate estimates of optimum
temperature (7,) (Potter et al., 1993) for canopy transpiration. The optimum tempera-
ture is the air temperature at the time of peak canopy activity, when the highest values
of absorbed photosynthetically active radiation and minimum values of vapour pressure
deficit occur. Further details of the PT-JPL model can be found in Fisher et al. (2008).

223 PM-Mu

The PM-Mu was developed from a two-source Penman-Monteith implementation (Mu
et al., 2007) to a three-source version (Mu et al., 2011) and forms the basis behind the
near real-time estimation of global evaporation in the MOD16 product (Mu et al., 2013).
Evaporation in the PM-Mu model is the sum of soil evaporation, canopy transpiration
and evaporation of the intercepted water in the canopy, i.e. (AE = AEg + AE; + AE;). Esti-
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mation of evaporation for each component is based on the Penman-Monteith equation
(Monteith, 1965), but weighted based on the fractional vegetation cover, relative sur-
face wetness and available energy. Parameterization of aerodynamic and surface resis-
tances for each source is based on extending biome specific conductance parameters
from the stomata to the canopy scale, using vegetation phenology and meteorological
data. In contrast to the majority of Penman-Monteith type of models, the PM-Mu does
not require wind speed and soil moisture data for parameterization of resistances. How-
ever, globally application of the model requires consideration of the fact that resistance
parameters were calibrated against data from a set of eddy-covariance towers. Further
details on PM-Mu can be found in Mu et al. (2011, 2013).

2.24 GLEAM

GLEAM (Miralles et al., 2011a) has been used not only in estimating global evaporation
(Miralles et al., 2011b) but also in detection and evaluation of heatwaves (Miralles et
al., 2014a), climate variability (Miralles et al., 2014b) and land-atmospheric feedbacks
(Guillod et al., 2015). Designed as a satellite data based model, GLEAM first esti-
mates interception loss using the analytical method of Gash (1979) and then applies
the Priestley-Taylor equation to calculate potential evaporation for soil and vegetation.
Like PT-JPL, the model constrains the potential evaporation values to actual values
by applying a stress factor, although GLEAM is based on different assumptions and
encompasses both moisture availability in a multi-layered soil system and vegetation
water content inferred from vegetation optical depth data (Liu et al., 2011b). In contrast
to SEBS, PT-JPL and PM-Mu, the GLEAM model is equipped with routines to quantify
sublimation of snow-covered regions, to estimate open-water evaporation and to as-
similate remote sensing soil moisture data. Routine application of GLEAM is usually
performed in time-series mode, in which the model tracks the changes of soil moisture
state across time stamps. Here, to allow application of the model at the tower-scale,
gaps in the tower data were filled by establishing correlation between the variables in
tower- and grid-based data. Simulated evaporation values were filtered from the anal-
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ysis for these gap-filled periods. Further details on GLEAM can be found in Miralles et
al. (2011a, b).

2.3 Model Simulation and Analysis

The four selected models were forced with both tower- and grid-based data. The results
were then filtered for daytime-only periods, defined as when the shortwave downward
radiation exceeds 20Wm'2, to avoid issues associated with negative net radiation
and nighttime condensation. The data were also filtered for rain events, for negative
sensible and latent heat flux observations, for low quality or gap-filled tower records,
for frozen land surfaces and for times in which air temperature was less than or equal
to 0°C. The performance of the models was evaluated for individual towers, for the
collection of data from all towers, for towers classified across biome types and for
towers classified across climate zones.

To evaluate the skill of the models, we used traditional scatterplots and common
statistical metrics including the coefficient of determination (RQ), slope (m) and y in-
tercept (b) of the linear regression, the root-mean-square difference (RMSD), relative
error [RE = RMSD/mean(AE,)] and the Nash-Sutcliffe Efficiency (NSE) (Nash and
Sutcliffe, 1970). In developing these performance metrics, simulated evaporation was
compared with tower-observed evaporation (1£ ) that were corrected for non-closure
using the energy residual technique, as described in Ershadi et al. (2014). Scatterplots
of matching percentiles (referred to hereafter as percentile plots) of observed evapora-
tion versus simulated values from the 1st to 99th percentile increment were also used
(Sect. 3.1). The 25th percentile (Q,5), median (Qsy) and 75th percentile (Q,5) were
used for further model assessment. To establish the response of the models to water
availability at individual tower sites, we calculated an aridity index as Al = P/Ep, with P

the annual precipitation (mm yr‘1) and £, the annual evaporation (mm yr‘1 ), calculated
using a Priestley-Taylor equation and assuming an alpha-coefficient of 1.26. LandFlux
V-0 data (Sect. 2.1.2) at 3-hourly resolution were used to calculate aridity index val-
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ues and an average value was calculated to represent the state of water availability at
specific tower locations.

3 Results

3.1 Relative performance of the models when using tower-based
and gridded data

Figures 2 and 3 show scatterplots, percentile plots and relevant statistical metrics of
the modelled evaporation for all of the available 3-hourly data records from across
the forty-five towers (representing 115 148 records in total). For the tower-based anal-
ysis (see Fig. 2), PT-JPL presents the best overall performance with lower model
spread and an RMSD =61 W m'z, RE =0.41, R? =0.71 and an NSE = 0.65. The model
slightly underestimates evaporation, with a slope of linear regression equal to 0.91 and
with the majority of the percentile plot (up to Q;5) located just under the 1:1 line.
When considering results across all towers, GLEAM presents comparable statistical
performance to PT-JPL, with an RMSD=64Wm_2, RE =0.43 and an NSE =0.62.
GLEAM tends to slightly underestimate evaporation, with the slope of linear regres-
sion equal to 0.84 and with the percentile plot being located under the 1:1 line. SEBS
generally overestimates evaporation and has the lowest overall performance, with an
RMSD =101 Wm™2, RE = 0.68 and NSE = 0.24, even though it has one of the highest
R? values at 0.72. For PM-Mu, the model tends to underestimates evaporation, result-
ing in an RMSD = 78Wm’2, RE =0.52 and an NSE = 0.45. Overall, the PT-JPL and
GLEAM seem to present as more robust candidate models for estimation of evapora-
tion, at least in terms of their statistical response at the tower scale. All models show a
large spread around the fitted linear regression line, due perhaps to variability in per-
formance as a response to the land surface type or climate condition. The inter-tower
variability of the models is an important element of this work and will be discussed
further in the following sections.
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The effect of using globally-gridded forcing data on the evaporation models is pre-
sented in Fig. 3. Apart from providing a direct evaluation on the accuracy of the global
LandFlux product, assessing flux response to a change in forcing aids in diagnosing
the model sensitivity to data uncertainties. Likewise, an indirect assessment of the is-
sue of footprint mismatch between the gridded data (0.5°) and the eddy-covariance
tower (hundreds of meters) can also be inferred. Figure 4 clearly shows that use of
the grid-based data reduces the performance of all models relative to the tower-based
runs, with all statistics degrading with a change in forcing resolution. SEBS displayed
the largest sensitivity to forcing data, with a 0.4 decrease in NSE and a 28Wm~2 in-
crease in RMSD. The sensitivity of PT-JPL and GLEAM to the use of gridded data was
lower, with both showing an approximately 0.3 decrease in NSE and around 22 W m~2
increase in RMSD when assessing the grid-based analysis. Overall, PM-Mu shows the
lowest sensitivity to forcing, with a 0.26 decrease in NSE and 18 Wm™? increase in
RMSD, albeit presenting the lowest correlation and slope of linear regression for all
model responses.

Overall, these results confirm that all models display a relatively high sensitivity to
changes in the type and quality of input forcing data. While gridded forcing data are
expected to have a mismatch with the tower-based forcing due to their larger pixel
(and footprint) sizes, this spatial mismatch will impact all of the applied models, albeit
to a lesser or greater extent, depending on forcing data requirements. While spatial
scale no doubt plays a major role in decreasing model efficiencies at grid-scales, the
most likely reason for the differences in tower- versus grid-based results relates to in-
ternal inconsistencies within the gridded forcing data. For instance, SEBS is known
to be particularly sensitive to the temperature gradient between the land surface and
the atmosphere (van der Kwast et al., 2009; Ershadi et al., 2013). While the tempera-
ture gradient at the tower scale is more reliable due to application of the tower-based
sensors for air temperature and land surface temperature, obtaining such consistency
is harder when different sources of forcing data are employed (see Sect. 2.1). Not
surprisingly, results also indicate that those models that use fewer inputs show lower
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sensitivity to changes in the forcing. As such, any inconsistency between the tower and
gridded data is likely to have less influence on the PT-JPL, GLEAM and PM-Mu models
than it will on SEBS, which in addition to vegetation height, requires both land surface
temperature and wind speed data: two variables with considerable spatial variability.

The large spread of data in the scatterplots indicates that there is considerable vari-
ability in the performance of the models at individual towers, irrespective of whether
tower or gridded data are used. Of course, it may also be indicative of systematic bi-
ases in in-situ data, which vary from one tower to another and subsequently impact
on model spread: however, this is non-trivial to determine. To investigate the nature of
this variability, we extend the analysis by developing time series of R“, RE and NSE at
3-hourly resolution for individual tower locations, as shown in Fig. 4. To examine per-
formance as a function of hydrological condition, the towers are arranged by degree of
increasing aridity, as determined by calculation of an aridity index (see Sect. 2.3), with
left-to-right representing the transition from wet-to-dry and describing an aridity index
varying between 1 and 0.

From Fig. 4 it can be observed that there is a general downward trend in both R?
and NSE as aridity increases, with a slight upward trend reflected in RE. In terms of
R?, most of the models except for PM-Mu show some consistency in performance until
an aridity index of around 0.7, wherein models start to diverge. Similar agreement is
seen in the relative error plot, although the outlier here is SEBS, which shows vari-
able performance unrelated to aridity changes. Examining the Nash-Sutcliffe efficiency
allows for a clearer evaluation of model response to be obtained. For this metric, PT-
JPL and GLEAM display relatively good correspondence for most of the towers, but
start to diverge more regularly for aridity indices below 0.8. Overall, PT-JPL presents a
marginally better response than GLEAM, with higher values of NSE and R? and lowest
values of RE produced across the majority of towers.

From Fig. 2 it was observed that SEBS presented the lowest values of NSE and high-
est values of RE, while PM-Mu had the lowest values of R Highlighting the importance
of examining a range of statistical metrics, the R? values for SEBS are actually com-
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parable to those of PT-JPL and GLEAM, or even higher for a majority of towers that
have an aridity index less than 0.7. Inspection of individual tower-based scatterplots
for each of the models (not shown) illustrated that while the SEBS evaporation has a
strong linear relationship with observed values for a majority of towers, the linear re-
gression line exhibits a large slope, indicating an overestimation in SEBS predictions.
Those towers that exhibit drops in NSE (and rise in RE) for the SEBS model (e.g.
DE-Tha, NL-Loo, US-Wrc, FR-Pue; see Table A1) are located mainly in shrubland and
forest biomes, suggesting a dependency of SEBS model performance that is tied to
land surface vegetation characteristics. Although statistical variations are evident in all
models, the greater response variability in SEBS is likely due to problems in simulat-
ing heat transfer within the roughness sub-layer (RSL), which often forms over tall and
heterogonous land surfaces (Harman, 2012). We explore the issue of skill dependency
of certain models to biome type and climate zone in Sect. 3.2 and 3.3.

As noted, Fig. 4 shows a general decrease in the predictive skill in all models where
towers have an aridity index less than 0.7, but particularly so for PM-Mu and SEBS.
These reductions may in part be due to data uncertainties in tower observations that
originate from the advection of dry air into the tower footprint, or to a reduced capacity
of the models to reproduce the evaporative response when evaporation represents
a small fraction of the total available energy. Two towers at which all models display
poor performance are IT-Noe and IL-Yat (see Fig. 1). It seems likely that IT-Noe is
influenced by strong advection of moist air from the Mediterranean Sea, while IL-Yat is
influenced by advection of hot and dry air from surrounding desert regions. None of the
models in this study are able to specifically account for advection and are thus prone
to misrepresenting the observed evaporative response.

3.2 Performance of the models across biomes

The variability in model performance across the tower sites observed in Fig. 4 indi-
cates that a biome-specific assessment could be useful to determine whether the per-
formance of the models is also correlated to the underlying land cover, in addition to
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any aridity influence. Figure 5 presents the R?, RE and NSE for each of the models for
the seven different biome classes. The analysis was conducted using the higher quality
tower-based simulations for all available 3-hourly data. One immediate highlight from
Fig. 5 is the relatively poor performance of all models over shrubland sites, where low
values of NSE (i.e. NSE < 0.05) and reduced R? can be observed. Ershadi et al. (2014)
observed a similarly poor response over shrublands in a separate tower-based analy-
sis that employed some of the same models examined here. They attributed the result
to difficulties in the parameterization of the models over such landscapes due to the
strong heterogeneities present in these environments, as well as inherent water limita-
tions. For instance, the capacity of the GIMMS NDVI data with 8 km spatial resolution
is clearly insufficient in effectively parameterizing the roughness for SEBS, resistances
for PM-Mu and constraint functions for the PT-JPL.

Excluding shrublands from the analysis, the PT-JPL is one of the best performing
models across the remaining biomes, having the highest values of NSE and R? and
lowest relative errors. Consistency in the performance of PT-JPL across biome types
has been reported in earlier studies (Vinukollu et al., 2011a; Ershadi et al., 2014) and
was variously ascribed to the formulation of its constraint functions (see Sect. 2.2.2)
and the minimal forcing data requirements, which reduce its sensitivity to uncertain-
ties in input data. GLEAM closely follows PT-JPL for evergreen needleleaf forest and
grassland biomes, but shows marginally lower NSE values for other biomes. Figure 5
also indicates that while SEBS has relatively high values of R? over the majority of
biome types, it fails to provide sufficient predictive skill for the estimation of evapora-
tion over shrublands and forest biomes. These biome types are characterized by tall
and heterogeneous canopies, within which the roughness sub-layer forms. The re-
duced capacity of the SEBS flux gradient functions in simulating heat transfer within
the roughness sub-layer has been highlighted previously (Weligepolage et al., 2012;
Ershadi et al., 2014). Although performing poorly in shrubland and forest biomes, the
SEBS model exhibits a comparatively good performance across wetlands, grasslands
and croplands, where shorter canopies dominate. PM-Mu presents the lowest values of
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R? across all biomes, although the model presents reasonable NSE values over crop-
land (0.64) and broadleaf forest (> 0.54) biomes. Improved performance of the PM-Mu
model over croplands has been observed in a recent study (Ershadi et al., 2015), but
the key reasons for low R? values of the model across other biomes is not immediately
apparent and requires further investigation.

Percentile plots of the 3-hourly tower-based results were used to identify whether
a model under- or over-estimates evaporation across its distribution function. From
Fig. 6 it can be seen that SEBS clearly overestimates while PM-Mu underestimates
evaporation across all biome types, reflecting those results presented in Fig. 2. The
percentile plots for SEBS are close to the 1:1 line for grassland and cropland biomes
that have short canopy height, confirming the observations made for Figs. 4 and 5.
PT-JPL shows good model reproduction of observed values over grassland and de-
ciduous broadleaf forest biomes, with the percentile plots close to the 1:1 line. How-
ever, the model slightly underestimated evaporation for croplands and overestimated
evaporation for wetlands, with the tails (percentiles greater than Q;5) reflecting greater
divergence than the bulk of the distribution. The rate of overestimation was higher for
evergreen needleleaf forest, evergreen broadleaf forest and for shrubland biomes. Fig-
ure 6 also shows that GLEAM presents strong performance over grasslands, croplands
and evergreen needleleaf forest sites, but underestimated evaporation across decidu-
ous broadleaf forest sites and tended to overestimate evaporation across the remaining
biomes.

Overall, all models show a tendency towards reduced performance when applied
over forest biomes, but improved performance over shorter canopies. These results
may be reflecting the fundamental physical basis behind approaches such as the base
Penman-Monteith (Penman, 1948), Priestley-Taylor (Priestley and Taylor, 1972) and
Monin-Obukhov flux gradient functions, which were developed for such surface types
(Brutsaert, 1982), highlighting the challenges inherent in global scale application of
such models, especially over diverse land cover types.
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To further evaluate the influence of biome type on evaporation estimation and to
discriminate the role of individual forcing variables in impacting model efficiencies, the
NSE and R? values between tower- and grid-based data were calculated for the flux
response, as well as for key forcing variables such as net radiation, land surface tem-
perature, air temperature, wind speed, specific humidity, fractional vegetation cover
and leaf area index. As can be seen in Fig. 7, agreement between tower-based and
grid-based net radiation data is relatively high across all biomes, but especially so over
forest biomes (NSE > 0.67). Grid-based wind speed data have the most variable agree-
ment with tower data, with 22 and NSE values generally lower than other selected vari-
ables across all of the examined biomes. Air temperature shows good agreement, with
both high NSE values (NSE >0.7) and high R? values (R? > 0.84). Specific humidity
data are also well reproduced (NSE > 0.72), as is land surface temperature with an
NSE > 0.80 for all biomes. In sharing a common GIMMS-NDVI based derivation, the
agreement for fractional vegetation cover and leaf area index data is reasonable over
the majority of biomes, except over evergreen broadleaf forest, where both the R? and
NSE are low.

The lower panel of Fig. 7 show R? and NSE values for both the tower- and grid-
based simulations against eddy-covariance observations for each of the models, dis-
criminated by biome type. As can be seen, the performance of all models is reduced
across all biomes when grid-based forcing data is used, a result reflected in all cases
by relatively lower NSE and R? values. PM-Mu had the smallest and SEBS had the
largest decrease in performance over a majority of the biomes, in accordance with the
findings of Sect. 3.1. PT-JPL and PM-Mu had a relatively constant decrease in NSE
and R? for the grid-based simulations. Decreased modelling performance was also
maintained for GLEAM, except over the single evergreen broadleaf forest tower, where
a more significant departure (relative to the other biome types), was observed. SEBS
showed a much larger variability in performance reduction, with smaller variations due
to forcing over forest biomes and larger reductions over biomes with shorter canopies.
The significant decrease in NSE for SEBS over grassland, cropland and to some extent
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the wetland biome, cannot be immediately associated with NSE or R? changes in any
of the forcing variables. It is interesting that the agreement over grassland and cropland
biomes between tower- and grid-based variables is amongst the highest (especially for
wind speed, fractional vegetation cover and for leaf area index data), yet the subse-
qguent model performance is among the worst. The use of global statistics to evaluate
model response makes discriminating the cause of this variability difficult. It is possible
that the statistics are biased low due to the influence of one or a few individual towers,
by errors in the forcing fields driving model parameterizations (i.e. vegetation height)
or in response to model sensitivities to particular forcing variables. Either way, these
results highlight the difficulties in diagnosing the cause of performance response and
related sensitivity to forcing data variables in complex process-based models, which of-
ten display a high degree of interactions between the variables. Indeed, diagnosing the
forcing variables responsible for reducing the efficiency of particular models is not fea-
sible with a simple correlation analysis of the input data fields, but requires a separate
and focused sensitivity analysis.

3.3 Performance of the Models over Climate Zones

Similar to the biome-wise analyses, an evaluation of the models was conducted across
a number of distinct climate zones, with Fx’z, RE and NSE values for tower-based 3-
hourly evaporation estimations shown in Fig. 8. Yet again, the results highlight the
importance of considering a range of evaluation metrics, as the models display some
variability relative to the statistical measure being employed. Overall, both PT-JPL and
GLEAM maintain a consistently good performance over the majority of climate zones,
with PT-JPL expressing a slightly improved response over all zones except temperate,
where GLEAM shows an improved simulation. In terms of F?z, PM-Mu presents the low-
est values overall, while SEBS exhibits high values over the majority of climate zones,
similar to the biome based analysis. However, SEBS generally fails to reproduce the
observed evaporation response, with high RE and low NSE. All models have their best
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performance over the temperate-continental climate zone, with high NSE and R? and
low RE, which was followed closely by the temperate climate zone. The lowest over-
all performance for all models corresponded to the dry climate zone, again reflecting
the aridity based results in Fig. 4. As discussed in Sect. 3.1, data uncertainties due
to the role of advection in dry regions and difficulties in the accurate estimation when
confronted with low evaporative fractions are likely reasons behind such performance
reductions in dry regions.

Figure 9 displays the corresponding percentile plots of model performance over the
five different climate zones. As can be seen, PT-JPL and GLEAM provide generally
good performance over all climate zones, although GLEAM slightly underestimates
evaporation for temperate-continental and boreal climate zones. SEBS overestimates
relative to tower-based evaporation across all biomes, while PM-Mu generally under-
estimates, except over temperate and temperate-continental climate zones, for which
the percentile plot of PM-Mu are relatively close to the 1:1 line.

Similar to Fig. 7, Fig. 10 outlines the model response differentiated for the differ-
ent climate zones when using grid-based forcing data. As can be seen from the lower
panel, the simulation performance is reduced across all climate zones, relative to the
tower data. In particular, SEBS is significantly impacted across the majority of climate
zones, with both a reduction in NSE and R?, except over boreal forests. One possible
reason for this smaller variation over boreal forests could be due to lower surface-to-air
temperature gradients over forests, which contributes to smaller sensible heat fluxes
and consequently larger evaporative fraction values (in contrast to model performance
over dry climates, where the temperature gradient is large). Nevertheless, the relation-
ship between uncertainty in individual variables and the reduction of modelling perfor-
mances is not able to be determined here. Further analysis examining the sensitivity
of individual models to their forcing is required.
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4 Discussion

Understanding the role of model forcing in influencing simulation results, as well as
examining the impacts of biome type and climate zone on flux response, are impor-
tant elements in the development of robust globally-distributed evaporation products.
The focus of this study was on evaluating a set of process-based models, to support
the development of globally distributed and long term observations of surface fluxes
as part of the GEWEX LandFlux project. Overall, the PT-JPL and GLEAM models pro-
vided the most consistent performance, while PM-Mu tended to underestimate and
SEBS overestimate evaporation relative to the forty-five eddy-covariance tower obser-
vations examined here. However, while statistical analysis allows a pseudo-ranking
of model performance, more detailed evaluation across towers, and biome and climate
types highlighted the considerable within-model variability in performance. Results also
demonstrated that changing the scale of input forcing data from tower- to grid-based
reduced the quality of model estimates in all cases, but especially for SEBS, where a
sensitivity to surface-air temperature gradients plays a strong role. In the following, we
examine these results and interpret any implications for large-scale global applications.

With its relatively simple modelling structure, PT-JPL performed consistently well
relative to the other models that have more complex structures and parameterization
configurations. One possible reason for this response may relate to the constraint func-
tions of PT-JPL serving a wide range of hydro-meteorological conditions, encompass-
ing energy-limited (e.g. boreal climate) to water-limited (e.g. dry climate) conditions.
The good performance of PT-JPL was also observed in a recent multi-model evalua-
tion study, with a summary of the strengths and limitations of the model presented in
Ershadi et al. (2014). GLEAM also performed well, both at the tower and at the grid-
scale (see Figs. 4 and 2). Previous studies have shown that the model is sensitive
to the accuracy of precipitation data (Miralles et al., 2011b), as this determines the
partitioning of intercepted evaporation in the model and the root-zone soil moisture.
Unfortunately, testing for such sensitivities was not possible here, as both tower- and
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grid-based records were filtered for rainfall events in post-processing steps, in response
to the limitation of eddy-covariance observations during such events.

In terms of the NSE, R? and RE, PM-Mu followed PT-JPL and GLEAM, with the
model tending to underestimate evaporation when applied to most of the tower- and
grid-based records. While reasons for this underestimation are not immediately clear,
a recent study examining the structure and parameterization of Penman-Monteith type
models (Ershadi et al., 2015) showed that the PM-Mu, which has a three-source struc-
ture, underperformed relative to a single-source (Monteith, 1965) and a two-layer ap-
proach (Shuttleworth and Wallace, 1985) across all studied biome types, except crop-
lands. An interesting aspect of Ershadi et al. (2015) was that application of the canopy
transpiration resistance scheme of the PM-Mu in those simpler models improved their
prediction skills. As such, the reduced performance of the PM-Mu predictions might
relate to underlying structural and parameterization issues in the model. As the oper-
ational model behind the generation of the current MOD16 global evaporation product
(Mu et al., 2013), further studies to diagnose the cause of these responses are re-
quired.

In terms of assessment against the tower-based eddy-covariance observations,
SEBS performed relatively poorly in most statistical metrics when compared to the
other models, as it overestimated evaporation across a majority of studied biomes and
climate zones, except over grasslands and cropland sites with short canopies (e.g.
less than 3 m). Interestingly, even though generally over-predicting results, it had one
of the highest R? values, indicating good correlation with the eddy-covariance observa-
tions. Findings from Ershadi et al. (2014) confirm the good performance of the model
over short canopies and its lack of performance over shrublands and forests. In terms
of performance against underlying biome type, it was observed that any performance
reduction was observed mainly across shrublands and forest biomes, where the rough-
ness sub-layer forms above the canopy (Harman, 2012). Importantly, the flux-gradient
functions of the SEBS model are not parameterized to effectively simulate the heat
transfer process in the roughness sub-layer, and hence the model fails to perform well
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(Weligepolage et al., 2012). The reliance of SEBS on an accurate representation of the
surface-air temperature gradient also limits the effectiveness of the model for global
application, demanding improvements in characterizing the spatial and temporal rep-
resentativeness of such variables.

It is apparent from Sect. 3.2 and 3.3 that the application of gridded data for modelling
evaporation inevitably reduces the predictive performance of all models, regardless of
their complexity in the evaporation process or their economy in forcing data require-
ments. In fact, the footprint mismatch between the tower- and grid-based simulations
is likely to increase uncertainties in the forcing data and cause discrepancies between
the simulated and tower-based evaporation values. Importantly, comparing the models
for their relative performance (see Figs. 7 and 10) reveals that the performance de-
crease for grid-based analysis was not equal amongst all of the models. For instance,
SEBS was observed to be more sensitive to the use of gridded forcing data, most likely
as a result of inconsistencies in temperature gradient fields: an aspect that has been
noted previously (van der Kwast et al., 2009; Ershadi et al., 2013). Although input un-
certainty also impacts the performance of PT-JPL, PM-Mu and GLEAM, the NSE and
R? of gridded simulations for those models are closer to their tower-based counter-
parts. Apart from indicating a robust model structure, the reduced impact seen in these
schemes may also be a consequence of avoiding the use of forcing data such land
surface temperature and wind speed data, which are known to be uncertain at both the
grid and tower-scale. Regardless of the culprit behind the observed performance dis-
crepancy between tower and grid-based simulations, it is clear that some models are
better suited to global application than others — at least given the quality of currently
available global forcing datasets. Importantly, the results presented in Sect. 3.2 and 3.3
showed that evaluating tower or grid-based statistical responses alone is not enough
to identify those forcing variables most impacting model performance. Diagnosing forc-
ing sensitivity is not trivial given non-linearities in the models and the high level of
interaction within model variables and parameters. Indeed, caution is warranted in any
approaches seeking to evaluate evaporation models using gridded data in isolation, as

6836

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
R ] >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/6809/2015/gmdd-8-6809-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/6809/2015/gmdd-8-6809-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

this is likely to yield unreliable performance metrics of the models. It is important to
perform a parallel tower-based data assessment to increase confidence in any single
models performance (Su et al., 2005) in any evaluation approach, particularly those
occurring at global scale,.

Although the largest possible set of eddy-covariance towers and a common set of
forcing data was used to evaluate the different model simulations, there are still in-
evitable limitations in the evaluations. Identifying such limitations is important not only
for the current evaluations, but also in guiding future contributions. One such exam-
ple relates to the period of tower data used for evaluation in this study (see Fig. A1),
as the data record length varies amongst the towers and the data are not uniformly
distributed across seasons. Moreover, the towers are not evenly distributed across the
studied biomes and climate zones (see Fig. 1, Table A1), with only one tower cover-
ing the entire evergreen broadleaf forest biome and two towers covering the wetland
biome. Further, no towers were available for use in arctic and tropical climate zones.
Although the tropical climate zone, especially Amazonian forests, is accounted as a
critical component in studies of the global water and energy cycles (Chahine, 1992;
Wohl et al., 2012), relatively few towers in this zone provide land surface tempera-
ture and longwave upward radiation data needed for the SEBS model. An additional
limitation is the coarse (8 km) spatial resolution of the GIMMS NDVI data used in the
models for the tower-based analysis, as this resolution certainly does not correspond
with the footprint of eddy-covariance sensors at any of the towers. Developments to-
wards improving the availability and access to long-term high-resolution Landsat im-
ages (e.g. via Google Earth Engine; https://earthengine.google.org) might be one way
to improve model forcing and evaluation exercises, especially with the development of
high-resolution vegetation products (Houborg et al., 2015).

While the accuracy of individual variables in the LandFlux dataset were enhanced by
bias correction against independent data sources (see Sect. 2.1), diagnosing the inter-
nal consistency of the data fields (McCabe et al., 2008), especially for air temperature,
land surface temperature, wind speed and humidity, is a concept that has not received
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much attention to date and demands more considered investigations and analysis. In-
ternal consistency is an extremely challenging objective, but is critically important for
flux estimation, where so many different forcing data are required. Essentially it de-
mands that all required model data are derived from a common set of forcing variables,
rather than by the standard approach of compilation based on availability and acces-
sibility. The most illustrative example would be in the development of radiation data,
derived here from NASA-GEWEX SRB sources (Stackhouse et al., 2011). Calculation
of radiation components requires air temperature, surface temperature, land surface
and vegetation features, as well as numerous other elements. However, these under-
lying variables are rarely if ever retained to provide a consistent overall forcing data set
(i.e. the meteorological variables used in producing the SRB data are not subsequently
used to drive the models). Interdependencies in forcing affect many variables in the
estimation of evaporation, yet products are not developed with this simple consistency
principle in mind. Apart from introducing further biases and uncertainties into model
simulations, until such consistency is attained, discriminating between the impact of
forcing versus the model sensitivity to that forcing will remain extremely challenging.
From one perspective, the performance of the evaporation models examined here
seems relatively poor, even when they are forced with high-quality tower-based data.
PT-JPL, which was identified as one of the most consistent and best performing mod-
els, still presented a relative error of 41 %, with errors for GLEAM, PM-Mu and SEBS
of 43, 52 and 72 %, respectively. However, it is important to recognise that tower-based
evaluation is perhaps the strictest measure of model performance and comes with its
own caveats. One question that remains outstanding is whether it is even appropri-
ate to expect models run with large-scale gridded forcing to replicate the small-scale
response observed by eddy-covariance towers. The alternative perspective, given in-
herent uncertainties in forcing, observations and specification of model parameters, is
that these results are encouraging. Perhaps broader scale metrics such as hydrologi-
cal consistency (McCabe et al., 2008), catchment based assessments or water budget
closure approaches would provide a better guide (Sheffield et al., 2009) and indeed,
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such evaluations will need to be performed. These questions highlight the difficulties in
not just producing global estimates, but perhaps more importantly, in evaluating their
quality.

The observed variability of modelling performance across the studied biomes and
climate zones implies that caution is required in advocating any single model for large-
scale or global application. These results reflect previous findings that any one mod-
elling approach is incapable of accurately reflecting the range of flux responses occur-
ring across diverse landscapes (Ershadi et al., 2014, 2015). One possible solution to
address this inherent model limitation is to assemble a mosaicked product based on
the predictive skill of the model(s) over particular biomes or climate zones. Another ap-
proach might be to develop an ensemble product using a suitable multi-model blending
technique, such as a Bayesian Model Averaging approach (Hoeting et al., 1999; Yao et
al., 2014). Either way, it is clear that further multi-model assessments are required for
progressing global scale flux characterisation and to ensure a robust and representa-
tive product is developed.

5 Conclusions

It is something of a contradiction that the global-scale estimation of surface fluxes is
both straightforward and extremely challenging at the same time. It is more straight-
forward than ever due to the availability of needed forcing data from various sources,
such as numerical weather prediction or other operational products, as well as the
increased development of global satellite based datasets. However, the comparative
ease with which products can be developed belies the difficulties in actually developing
robust and coherent simulations. Uncertainties in the use of internally inconsistent forc-
ing data, the influence of untested model parameterizations over different land surface
and climate types, violation of model assumptions in their graduation from the local
scale to global scale and the perennial question on how to best evaluate model output
all seek to confound global flux efforts.
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The evaluation of four process-based evaporation models as part of the GEWEX
LandFlux project, undertaken here over a range of biome types and climate zones,
highlighted the variable performance and verified the sentiment that no single model is
able to consistently outperform any other. While individual model results at the tower
scale allowed for a relative performance ranking, the overall model errors when con-
sidered globally were high. Of those models assessed here and being considered as
potential candidates for a GEWEX-LandFlux product, PT-JPL and GLEAM represent
the most likely schemes for providing consistent simulation response over a range of
biome and climate types. In a challenge for the development of more accurate global
flux products, application of gridded data reduces the performance of all models, even
if the overall performance ranking does not change between simulation runs. Such a re-
sponse has obvious implications when model simulations at the continental and global
scales are increasingly required in many applications and where not only the forc-
ing data have large uncertainties, but also the underlying assumptions of the models
themselves are likely to be questioned. Further investigations on the reasons for such
variable performance and ways to offset the inherent uncertainties in global forcing are
required. Additional research is also needed to improve the structure and parameteri-
zation of some of these candidate models, to understand model sensitivities to forcing
by conducting a thorough sensitivity analysis and to develop and implement an appro-
priate ensemble modelling and merging technique that takes advantage of individual
model performance over defined regions. Further detailed comparisons against esti-
mates from more complex modelling systems, such as reanalysis, are also necessary
tasks for future investigations.

Code availability

The PM-Mu, SEBS and PT-JPL models were coded in MATLAB as part of the GEWEX
LandFlux and WACMOS-ET projects, in discussion with (but independent of) the prin-
cipal model authors, as referenced in the relevant publications. The GLEAM model was
developed in MATLAB by Diego Miralles and Brecht Martens. All model code can be
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made available upon an emailed request to hydrology @kaust.edu.sa, including a brief
description of the intended purpose and application.

Data availability

Evaporation model output presented here for both the gridded and tower based analy-
ses can be provided upon an emailed request to hydrology @ kaust.edu.sa. The request
should include a brief description of the intended purpose and application of the model
data.
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Table 1. Summary of data sources for tower-based and grid-based analysis and their spatial

and temporal resolutions.

Variable

Tower-based

Grid-based

Model

Air temperature

Tower data aggregated to 3-hourly

LandFlux data at 0.5° and 3-hourly

All models

Humidity Tower-based relative humidity con- Specific humidity from LandFlux data All except GLEAM
verted to specific humidity and aggre- at 0.5° and 3-hourly
gated to 3-hourly
Pressure Calculated as a function of ground ele- LandFlux data at 0.5° and 3-hourly All models
vation
Net radiation Tower data aggregated to 3-hourly LandFlux data from SRB v3 at 1° and  All models
3-hourly
Ground heat flux Tower data aggregated to 3-hourly Calculated from net radiation and frac-  All models
tional vegetation cover data, 0.5° and
3-hourly
Land surface Calculated from tower-based longwave LandFlux data at 0.5° and 3-hourly SEBS only
temperature upward radiation and aggregated to 3-
hourly
Wind speed Tower data aggregated to 3-hourly LandFlux data at 0.5° and 3-hourly SEBS only
Canopy height Tower meta data JPL product and Eq. (1) SEBS only
NDVI GIMMS NDVI at 8 km and bi-monthly GIMMS NDVI at 0.5° and bi-monthly All except GLEAM

Leaf area index

Calculated from NDVI

LandFlux data at 0.5° and monthly

SEBS and PM-Mu

Fractional vegetation
cover

Not used as ground heat flux is avail-
able.

Calculated from NDVI

All except GLEAM

Precipitation Tower data aggregated to 3-hourly LandFlux data at 0.5° and 3-hourly GLEAM only

Soil properties IGBP-DIS at 5 arc-minutes IGBP-DIS data aggregated to 0.5° GLEAM only

Soil moisture CCI-WACMOS data at 0.25° and daily ~ Same as tower-based GLEAM only

Soil depth GlobSnow (daily and 25 km) Same as tower-based GLEAM only

Vegetation optical From Liu et al. (2011b) at 0.25° and Same as tower-based GLEAM only

depth daily

Snow water equivalent GlobSnow and NSIDC at 0.25° and Same as tower-based GLEAM only
daily

Lightning frequency Monthly climatology at 0.5° Same as tower-based GLEAM only

Cover fractions MOD44B data at 250 m MODA44B data at 0.5° GLEAM only
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Table A1. Selected eddy-covariance and their attributes.

Site-ID Country Lat. Lon. Ground IGBP Climate Climate Reference
Elev. Class Zone

(ma.s.l.)
BW-Ma1 Botswana -19.9 23.6 947 WSA BSh Dry Veenendaal et al. (2004)
CA-Cal  Canada 499 -125.3 324 ENF Cfb Temperate Humphreys et al. (2006)
CA-Mer  Canada 454  -755 68 WET Dfb Temperate-Continental ~ Kross et al. (2013)
CA-Oas  Canada 53.6 -106.2 594 DBF Dfc Boreal Fu et al. (2014)
CA-Obs  Canada 540 -105.1 593 ENF Dfc Boreal Fu et al. (2014)
CA-Ojp Canada 539 -104.7 517 ENF Dfc Boreal Hilton et al. (2014)
CA-Qfo Canada 49.7 -743 389 ENF Dfc Boreal Flanagan et al. (2012)
CN-Do2  China 31.6 121.9 4 WET Cfa Sub-Tropical Yan et al. (2008)
DE-Geb  Germany 51.1 10.9 159 CRO Cfb Temperate Smith et al. (2010)
DE-Hai Germany 51.1 10.5 458 DBF Cfb Temperate Rebmann et al. (2005)
DE-Kli Germany 50.9 13.5 480 CRO Cfb Temperate Smith et al. (2010)
DE-Meh  Germany 51.3 10.7 289 GRA Cfb Temperate Don et al. (2009)
DE-Tha  Germany 51.0 13.6 387 ENF Cfb Temperate Delpierre et al. (2009)
DE-Wet  Germany 50.5 11.5 789 ENF Cfb Temperate Richardson et al. (2010)
FR-LBr France 44.7 -0.8 71 ENF Cfb Temperate Gockede et al. (2008)
FR-Lam  France 43.5 1.2 182 CRO Cfb Temperate Merlin et al. (2011)
FR-Pue France 43.7 3.6 271 EBF Csa Sub-Tropical Soudani et al. (2014)
IL-Yat Israel 31.3 35.1 654 ENF BSh Dry Sprintsin et al. (2011)
IT-BCi Italy 40.5 15.0 9 CRO Csa Sub-Tropical Reichstein et al. (2003)
IT-Col ltaly 41.8 13.6 15634 DBF Cfa Sub-Tropical Chiti et al. (2010)
IT-Lav Italy 46.0 1.3 1367 ENF Cfb Temperate Stoy et al. (2013)
IT-MBo Italy 46.0 11.0 1563 GRA Cfb Temperate Gamon et al. (2010)
IT-Noe Italy 40.6 8.2 27 CSH Csa Sub-Tropical Carvalhais et al. (2010)
IT-Ro1 Italy 42.4 11.9 174 DBF Csa Sub-Tropical Chiti et al. (2010)
JP-Tom Japan 42.7 141.5 133 MF Dfb Temperate-Continental  Saigusa et al. (2010)
NL-Ca1 Netherlands 52.0 4.9 -1 GRA Cfb Temperate Gioli et al. (2004)
NL-Loo Netherlands 52.2 5.7 34 ENF Cib Temperate Sulkava et al. (2011)
PT-Mi2 Portugal 38.5 -8.0 191 GRA Csa Sub-Tropical Gilmanov et al. (2007)
RU-Fyo Russia 56.5 32.9 274 ENF Dfb Temperate-Continental ~ Smith et al. (2010)
SE-Nor Sweden 60.1 17.5 35 ENF Dfb Temperate-Continental ~ Zierl et al. (2007)
US-ARM  USA 366 -97.5 318 CRO Cfa Sub-Tropical Lokupitiya et al. (2009)
US-Aud  USA 316 -1105 1474 GRA BSk Dry Horn and Schulz (2011)
US-Bkg USA 443 -96.8 496 GRA Dfa Temperate-Continental  Hollinger et al. (2010)
US-Bot USA 40.0 -88.3 218 CRO Dfa Temperate-Continental  Hollinger et al. (2010)
US-Bo2  USA 40.0 -88.3 220 CRO Dfa Temperate-Continental  Hollinger et al. (2010)
Us-Cav  USA 39.1 -79.4 993 GRA Cfb Temperate Hollinger et al. (2010)
US-FPe  USA 48.3 -105.1 632 GRA BSk Dry Horn and Schulz (2011)
US-Goo USA 343 -89.9 94 GRA Cfa Sub-Tropical Hollinger et al. (2010)
US-MMS USA 393 -864 290 DBF Cfa Sub-Tropical Dragoni et al. (2011)
US-MOz USA 387 -922 238 DBF Cfa Sub-Tropical Hollinger et al. (2010)
US-NR1  USA 40.0 -105.5 3053 ENF Dfc Boreal Hilton et al. (2014)
US-SRM  USA 31.8 -110.9 1120 WSA BSk Dry Cavanaugh et al. (2011)
US-WCr USA 458  -90.1 524 DBF Dfb Temperate-Continental ~ Curtis et al. (2002)
US-Wkg USA 31.7 -109.9 1522 GRA BSk Dry Scott (2010)
US-Wrc  USA 458 -122.0 391 ENF Csb Temperate Wharton et al. (2009)
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Figure 1. Location of the selected towers and their distributions for various biomes.
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Figure 2. Scatterplots of observed versus simulated latent heat flux for tower-based data. Col-
ors show the frequency of values from high (red) to low (yellow). The thick black line represents
the linear regression, while the thin line is the 1:1 line. The series of small circles show the
percentile increments of data from the 1st to 99th, with large circles denoting the 25th, 50th
and 75th percentiles. The statistics shown on each figure provide coefficient of determination
(RZ), slope (m), y intercept (b), number of data records (n), the root-mean-squared difference
(RMSD), relative error (RE) and the Nash-Sutcliffe Efficiency (NSE).
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Figure 3. Scatterplots of observed versus simulated evaporation for grid-based data. Colors
show the frequency of values from high (red) to low (yellow). The thick black line is the linear
regression and the thin line is the 1:1 line. The series of small circles show the percentile
increments of data from the 1st to 99th, with large circles denoting the 25th, 50th and 75th
percentiles. The statistics shown on the graphs are coefficient of determination (R?), slope (m),
y intercept (b), number of data records (n), the root-mean-squared difference (RMSD), relative
error (RE) and the Nash-Sutcliffe Efficiency (NSE).
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Figure 4. Comparison of the performance skill of the models in reproducing evaporation for
the tower-based analyses. R? is the coefficient of determination, RE is relative error (lower is
better) and NSE is the Nash-Sutcliffe Efficiency (higher is better). Towers are arranged from left

to right based on aridity index.
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Figure 5. Coefficient of determination (/-?2), relative error (RE) and Nash-Sutcliffe Efficiency
(NSE) for models across different biome types. Each point represents the collection of all avail-
able 3-hourly records of towers located within the selected biome, with the number of towers
shown on the secondary y axis of the R? plot in red. NSE for the shrubland response of SEBS
is printed.
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Figure 6. Percentile plots of observed (x axis) versus estimated latent heat flux (y axis) at
3-hourly resolution for the tower-based analysis across the seven studied biomes. Percentiles
encompass the 1st to 99th range in 1 percent increments, with Q,5, Q5, and Q.5 denoted by
large coloured circles.
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Figure 7. The upper panel presents Nash-Sutcliffe Efficiency (NSE; x axis) and R? (color tone)
between tower- and grid-based values for net radiation, land surface temperature, air tempera-
ture, wind speed, specific humidity, fractional vegetation cover and leaf area index, across the
seven studied biome types. The lower panel presents the NSE (x axis) and R? of model sim-
ulated evaporation against closure-corrected observed values. The number of towers for each
biome type used in the analysis are shown in red font on the secondary (right) axis in each of
the plots. Statistics for those results beyond the range of the x axis are printed separately on
the plot.
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Figure 8. Coefficient of determination (/-?2), relative error (RE) and Nash-Sutcliffe Efficiency
(NSE) for model simulated results across the five different climate zones (y axis). The zones
are represented by dryland (DRY), temperate continental (TempCONT), temperate (TEMP),
sub-tropical (subTRO) and boreal (BOR). Each point represents the collection of all towers
located within the selected climate zone, with the number of towers shown on the secondary
y axis of the A% panel in red.
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Figure 9. Percentile plots of observed (x axis) versus estimated latent heat flux (y axis) at 3-
hourly resolution for tower-based analysis and across the different climate zones. Percentiles
encompass the 1st to 99th range in 1 percent increments. Q,5, Q5 and Q5 are denoted by
large circles.
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Figure 10. The upper panel shows Nash-Sutcliffe Efficiency (NSE; x axis) and R? (color tone)
between tower-based and grid-based values for net radiation, land surface temperature, air
temperature, wind speed, specific humidity, fractional vegetation cover and leaf area index
across the five different climate zones. The lower panel shows NSE (x axis) and A% of model
simulated evaporation against closure-corrected observed values across climate zones. The
number of towers for each biome are shown in red font on the secondary (right) axis of the
plots. Statistics for the grid-based SEBS result over dry climate zone are printed.
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Figure A1. Period for available records for the towers that were used in this study.
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